The Biequivalence of Locally Cartesian Closed Categories and Martin-Löf Type Theories

نویسندگان

  • Pierre Clairambault
  • Peter Dybjer
چکیده

Seely’s paper Locally cartesian closed categories and type theory contains a well-known result in categorical type theory: that the category of locally cartesian closed categories is equivalent to the category of Martin-Löf type theories with Π,Σ, and extensional identity types. However, Seely’s proof relies on the problematic assumption that substitution in types can be interpreted by pullbacks. Here we prove a corrected version of Seely’s theorem: that the Bénabou-Hofmann interpretation of Martin-Löf type theory in locally cartesian closed categories yields a biequivalence of 2-categories. To facilitate the technical development we employ categories with families as a substitute for syntactic Martin-Löf type theories. As a second result we prove that if we remove Π-types the resulting categories with families are biequivalent to left exact categories.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Undecidability of Equality in the Free Locally Cartesian Closed Category

We show that a version of Martin-Löf type theory with extensional identity, a unit type N1,Σ,Π, and a base type is a free category with families (supporting these type formers) both in a 1and a 2-categorical sense. It follows that the underlying category of contexts is a free locally cartesian closed category in a 2-categorical sense because of a previously proved biequivalence. We then show th...

متن کامل

The Interpretation of Intuitionistic Type Theory in Locally Cartesian Closed Categories - an Intuitionistic Perspective

We give an intuitionistic view of Seely’s interpretation of Martin-Löf’s intuitionistic type theory in locally cartesian closed categories. The idea is to use Martin-Löf type theory itself as metalanguage, and E-categories, the appropriate notion of categories when working in this metalanguage. As an E-categorical substitute for the formal system of Martin-Löf type theory we use E-categories wi...

متن کامل

Dependent Cartesian Closed Categories

We present a generalization of cartesian closed categories (CCCs) for dependent types, called dependent cartesian closed categories (DCCCs), which also provides a reformulation of categories with families (CwFs), an abstract semantics for Martin-Löf type theory (MLTT) which is very close to the syntax. Thus, DCCCs accomplish mathematical elegance as well as a direct interpretation of the syntax...

متن کامل

Two-dimensional models of type theory

This is the second in a series of papers detailing the author’s investigations into the intensional type theory of Martin-Löf, as described in Nordström et al. (1990). The first of these papers, Garner (2009), investigated syntactic issues relating to its dependent product types. The present paper is a contribution to its categorical semantics. Seely (1984) proposed that the correct categorical...

متن کامل

The Logic of the Partial λ-Calculus With Equality

We investigate the logical aspects of the partial λ-calculus with equality, exploiting an equivalence between partial λ-theories and partial cartesian closed categories (pcccs) established here. The partial λ-calculus with equality provides a full-blown intuitionistic higher order logic, which in a precise sense turns out to be almost the logic of toposes, the distinctive feature of the latter ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011