The Biequivalence of Locally Cartesian Closed Categories and Martin-Löf Type Theories
نویسندگان
چکیده
Seely’s paper Locally cartesian closed categories and type theory contains a well-known result in categorical type theory: that the category of locally cartesian closed categories is equivalent to the category of Martin-Löf type theories with Π,Σ, and extensional identity types. However, Seely’s proof relies on the problematic assumption that substitution in types can be interpreted by pullbacks. Here we prove a corrected version of Seely’s theorem: that the Bénabou-Hofmann interpretation of Martin-Löf type theory in locally cartesian closed categories yields a biequivalence of 2-categories. To facilitate the technical development we employ categories with families as a substitute for syntactic Martin-Löf type theories. As a second result we prove that if we remove Π-types the resulting categories with families are biequivalent to left exact categories.
منابع مشابه
Undecidability of Equality in the Free Locally Cartesian Closed Category
We show that a version of Martin-Löf type theory with extensional identity, a unit type N1,Σ,Π, and a base type is a free category with families (supporting these type formers) both in a 1and a 2-categorical sense. It follows that the underlying category of contexts is a free locally cartesian closed category in a 2-categorical sense because of a previously proved biequivalence. We then show th...
متن کاملThe Interpretation of Intuitionistic Type Theory in Locally Cartesian Closed Categories - an Intuitionistic Perspective
We give an intuitionistic view of Seely’s interpretation of Martin-Löf’s intuitionistic type theory in locally cartesian closed categories. The idea is to use Martin-Löf type theory itself as metalanguage, and E-categories, the appropriate notion of categories when working in this metalanguage. As an E-categorical substitute for the formal system of Martin-Löf type theory we use E-categories wi...
متن کاملDependent Cartesian Closed Categories
We present a generalization of cartesian closed categories (CCCs) for dependent types, called dependent cartesian closed categories (DCCCs), which also provides a reformulation of categories with families (CwFs), an abstract semantics for Martin-Löf type theory (MLTT) which is very close to the syntax. Thus, DCCCs accomplish mathematical elegance as well as a direct interpretation of the syntax...
متن کاملTwo-dimensional models of type theory
This is the second in a series of papers detailing the author’s investigations into the intensional type theory of Martin-Löf, as described in Nordström et al. (1990). The first of these papers, Garner (2009), investigated syntactic issues relating to its dependent product types. The present paper is a contribution to its categorical semantics. Seely (1984) proposed that the correct categorical...
متن کاملThe Logic of the Partial λ-Calculus With Equality
We investigate the logical aspects of the partial λ-calculus with equality, exploiting an equivalence between partial λ-theories and partial cartesian closed categories (pcccs) established here. The partial λ-calculus with equality provides a full-blown intuitionistic higher order logic, which in a precise sense turns out to be almost the logic of toposes, the distinctive feature of the latter ...
متن کامل